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This work brings together experimental and theoretical studies of nonlinear stages 
aimed at the K-regime in boundary-layer transition, and some combined theoretical 
and experimental results are discussed. It is shown that the initial stages in the 
formation of so-called spikes, observed in many experiments, may be described very 
well by the asymptotic theory. These flashes-spikes are shown to be (in certain regimes) 
possible solitons of the boundary layer and governed by the integral-differential 
Benjamin-Ono equation. Properties of the spike-solitons, obtained both theoretically 
and experimentally in the quasi-planar stages of their development, are presented. 
Features of the disturbance behaviour connected with the subsequent development of 
three-dimensionality are also discussed, as are the effects of viscosity and shorter 
lengthscales. The main conclusion of the work concerns the hypothesis of the possible 
soliton nature of the flashes-spikes (within limits), which seems reliably corroborated 
by the good agreement found between the theory and the experimental data. 

1. Introduction 
Depending on the disturbance environment, there are many types of lami- 

nar-turbulent transition in boundary-layer flows, but among these there are two 
particularly distinct types observed for flat-plate boundary layers. The first was 
discovered more than thirty years ago by Klebanoff and co-authors (Schubauer & 
Klebanoff 1956; Klebanoff & Tidstrom 1959; Klebanoff, Tidstrom & Sargent 1962) 
and later was termed the K-regime of laminar-flow breakdown; this is the prime 
concern of the present work. The second type was found experimentally in 1976 
(Kachanov, Koslov & Levchenko 1977) and is often termed the N-regime of transition 
(or the subharmonic one). The nature of this latter regime has been studied both 
experimentally (Kachanov & Levchenko 1984; Saric, Carter & Reynolds 1981 ; 
Thomas & Saric 1981; Corke 1990 and others) and theoretically (see for review 
Kachanov 1987a, Herbert 1988; Nayfeh 1987; Smith 1990) since its first detection. The 
main mechanism of the N-breakdown was shown to be connected with the parametric 
resonant amplification of background quasi-stochastic subharmonic disturbances as 
they interact with the primary fundamental instability. In contrast, the advance in 
understanding of the causes of K-breakdown has been rather slow, and it  is clear now 
that the difficulties in this field are probably connected with the much more 
complicated nature of the K-regime of boundary-layer transition compared with the 
N-breakdown. 

The present paper is devoted to both theoretical and experimental studies aimed at 
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further understanding of K-breakdown. In this work, (a) a rational asymptotic theory 
for the description of the early nonlinear stages of the disturbance development is put 
forward, (b)  experimental results on the development of coherent structures with 
soliton-like properties (CS-solitons), observed in the K-regime of breakdown, are 
presented and analysed, and ( c )  comparisons are made between (a) ,  (b).  

The structure of K-breakdown was intensively studied experimentally in the 1960s 
first (see for example Kovasnay, Komoda & Vasudeva I962 ; Tani & Komoda 1962 ; 
Komoda 1967; Hama & Nutant 1963). The results of later investigations in this field 
are discussed in the review of Kachanov, Kozlov & Levchenko (1982). This type of 
transition was clearly shown to be characterized by the appearance, on the velocity 
oscilloscope traces, of powerful flashes of disturbances, in the specific form of spikes 
whose magnitudes reach 30-40 YO. Their appearance has been associated with an 
‘explosive’ high-frequency secondary instability of the flow (see also below however) 
and with the beginning of a randomization of the laminar regime. The phenomenon of 
multiplication (doubling, tripling etc.) of the spikes was observed further downstream, 
within each period of the fundamental wave. This process was assumed to be 
responsible for the final breakdown of the laminar flow and its full transition to 
turbulence. 

Many problems in the understanding of K-breakdown arose because the language 
of the study in Klebanoff et al. (1962), and in most of the following experimental 
studies, concerned mainly local disturbance properties in time and space and this 
differed greatly from the wave-spectral notions that were developed extensively in the 
theories of the 1960s and 1970s. In the early 1980s new detailed experimental studies 
of K-breakdown were undertaken (Kachanov et al. 1985, 1989). The results obtained 
provide systematic information about the spectral (frequency and frequency- 
wavelength) structure of disturbances at the nonlinear stages of their development and 
changed some notions about the character of the K-breakdown. One of the most 
important conclusions of this study is that the flashes-spikes are not of stochastic 
character, but can represent strictly deterministic, periodic, structures (with con- 
servative properties) generated as a result of the process of gradual amplification of 
definite higher harmonics of the fundamental wave and their phase synchronization. 
Independently, the asymptotic theory based on the nonlinear integral-differential 
Benjamin-Ono equation was advanced in Zhuk & Ryzhov (1982), Smith & Burggraf 
(1985). The ensuing development of these experimental and theoretical results, and in 
particular their unification (which occurred only near the end of the 1980s), resulted in 
a new suggestion on the soliton nature of the flashes-spikes, as described herein. 

First, however, let us describe in more detail the evolution of notions about the main 
mechanisms of K-breakdown in a laminar boundary layer. 

The question of the causes of spike generation is one of the main theoretical 
problems in the study of K-breakdown. As mentioned above, the concept of local high- 
frequency secondary (LHS) instability of the flow (Klebanoff et al. 1962; Kovasnay 
et al. 1962; Tani & Komoda 1962, Komoda 1967; Hama & Nutant 1963; Betchov 1960; 
Greenspan & Benney 1963; Landahl 1972; Itoh 1981 ; Nishioka, Asai & Iide 1980) was 
for almost thirty years the most widely held explanation of the cause of the spikes’ 
appearance. The essence of this mechanism lies in the amplification of a packet of high- 
frequency fluctuations under the influence of an unstable inflexional instantaneous 
velocity profile which is formed (locally in time and space) by a low-frequency primary 
wave. A direct experimental ‘verification ’ of the LHS-instability concept was seemingly 
performed by Nishioka et al. (1980) for flat channel flow (for which the K-regime of 
transition is unlikely to be exactly the same as in a boundary layer, however). This 
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experiment appeared to confirm the realization of this mechanism. However, the 
question of whether the mechanism of LHS instability is really the immediate cause of 
the spikes’ generation, or not, remained open. Later it was found experimentally 
(Borodulin & Kachanov 1988) that the answer to this question is most probably in the 
negative. The main conclusions of Borodulin & Kachanov (1988) can be formulated as 
follows: (i) the mechanism of LHS instability does actually take place in the K-regime 
of boundary-layer transition ; however, (ii) the generation of the flashes-spikes is 
probably not connected immediately with this mechanism ; and (iii) the spikes are 
almost certainly of soliton nature. 

The conclusion (i) is in good agreement of course with the corresponding conclusion 
of Nishioka et al. (1980) obtained for flat channel flow. The conclusion (iii), in contrast, 
suggests a new explanation of the mechanism of nonlinear evolution of the primary 
harmonic wave; see also Smith & Bowles (1992). An analogous explanation had been 
proposed in theoretical works, addressing the results of numerical simulations of 
nonlinear wave-packet development. These works were carried out within the 
framework of triple-deck theory for boundary layers with self-induced pressure, for 
which Ryzhov & Savenkov (1989), Conlisk, Burggraf & Smith (1987) found the 
formation of soliton structures inside the central cycles of oscillations within the packet 
and governed by the Benjamin-Ono equation, as suggested by Zhuk & Ryzhov (1982), 
Smith & Burggraf (1985). All these experimental and theoretical results (and others, as 
in the Appendix) lay the foundation for new notions about not only a definite 
succession of different types of instabilities, but also about the mechanisms for the 
formation of coherent structures observed in the early stages of laminar-turbulent 
transition. 

There is also the question of the place of weakly nonlinear instability theories in the 
explanation of the causes of laminar-flow breakdown. Such theories have been much 
studied, and a number of important results obtained within their framework. In 
particular in Raetz (1959), Craik (1971), Nayfeh & Bozatli (1979), Smith & Stewart 
(1987) and others, a weakly nonlinear theory of resonant interactions of two- and 
three-dimensional instability waves has been developed. Another mathematical 
approach has been developed by Herbert (1983, 1984), Herbert & Grouch (1990) 
within the framework of Floquet theory for the investigation of transition onset in 
boundary layers and flat channel flows (see also Herbert, 1988). The mechanisms of 
resonant-wave interaction (in particular subharmonic resonances), found in these 
theories, may exert a decisive influence on the main physical phenomena in N- 
breakdown rather than in K-breakdown. 

Weakly nonlinear theory was also used by Kachanov (1987a, b)  for analysis of the 
experimental data from Kachanov & Levchenko (1984), Kachanov et al. (1985, 1989), 
leading to a physical model for an initial deterministic stage of K-breakdown which 
was termed the wave-resonant concept of breakdown. It is clear however that the sense 
of weakly nonlinear notions tends to zero as the number of frequency harmonics tends 
to infinity and their amplitudes become comparable with each other. Weakly nonlinear 
theory, like the LHS-instability theory described earlier, becomes invalid before K- 
breakdown (with flash-spikes) can be reached. In place of that, the mathematical 
description of the fully nonlinear soliton nature of the flash-spike can be achieved 
within the framework of asymptotic theory with the help of the Benjamin-Ono 
equation (see Ryzhov (1990), Zhuk & Ryzhov (1982), Smith & Burggraf (1985), 
Ryzhov & Savenkov (1989), Rothmayer & Smith (1987), Conlisk et al. (1987), and in 
53) to a large extent : see also the Appendix. 

We make a few remarks here, in conclusion, about direct numerical simulations of 
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K-breakdown, based on the complete Navier-Stokes equations; see for example Fasel 
(1990), Wray & Hussaini (1984), Zang et al. (1987), Laurien & Kleiser (1989), Fasel, 
Rist & Konzelmann (1987), Thum, Wolz & Fasel (1990), Masad & Nayfeh (1990). Of 
special note perhaps are the works by Fasel and co-workers which use the spatial 
model (Fasel 1990; Fasel et al. 1990) in contrast with the temporal one that is usually 
used for transition numerical simulations by other authors. For example the velocity 
field in K-breakdown was well reproduced as a whole in Fasel (1990) for the 
conditions of the experiment presented in Kachanov et al. (1985, 1989). The agreement 
is so impressive that there appears to be almost complete equivalence of the physical 
and numerical simulation of K-breakdown in the boundary-layer flow, including the 
stage of spikes’ formation and their multiplication. However, this ‘numerical 
experiment ’ (as well as the physical one) still does not really identify clearly the major 
physical mechanisms in the flow breakdown. Other approaches, especially analytical 
and semi-analytical ones, are felt to be of likely importance in identifying such 
mechanisms. 

The present paper is devoted to a new combined experimental and theoretical 
investigation of the formation and development of coherent structures/solitons in the 
K-regime of flat-plate boundary-layer breakdown. Following the terminology 
introduced earlier (Kachanov 1990) these structures will be termed CS-solitons. 

2. Identification of flashes-spikes with solitons 
Starting with the pioneering work by Klebanoff et al. (1962), the generation of 

flashes-spikes in the K-regime of transition was usually associated with the start of a 
stormy breakdown and randomization of the laminar flow. However, as mentioned 
earlier, subsequent experiments indicate (see Kachanov et al. 1984) a strictly 
deterministic character up to the spike-formation stage if/when background 
uncontrolled disturbances are small compared with the initial artificial (deterministic) 
disturbances. The typical spike quickly moves away from the wall during its formation 
and then acquires rather a conservative form which hardly changes further 
downstream. In later stages of its development, characterized by a rather strong three- 
dimensionality of the flow field, doubling, tripling, etc. of the spikes are observed closer 
to the wall. Such a multiplication of the spikes is also detected when moving 
downstream along the lines y = const. (i.e. parallel to the plate). At the same time the 
only strongly pronounced spike is observed within each cycle of the periodic signal in 
the external part of the boundary layer. 

The evolution in the form of the disturbance oscilloscope traces observed during the 
spike formation and its downstream propagation is illustrated visually in figure 1, 
drawn from the experimental data obtained in Kachanov (1990, 1991 and references 
therein). The traces are displayed for x = 400-595 mm from the leading edge of the 
plate. The last position corresponds to an almost turbulent flow inside the boundary 
layer. We should remark that the experimental set-up and test conditions here have 
been described in numerous papers by Kachanov and colleagues, see references, and 
that the term spike refers to the velocity fluctuations in time at different spatial 
locations. 

Borodulin & Kachanov (1988) drew attention to the feature, observed exper- 
imentally, that ‘despite the existence of the rather strong dispersion of the instability 
waves.. . the spikes do not disperse but, on the contrary, gather in narrow flashes and 
propagate steadily downstream within the boundary layer almost without change of 
their form and amplitude’. On the basis of these and other observations the following 
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FIGURE 1. Formation and development of flash-spike. The y-coordinates correspond to maximal 
spike magnitude and are shown in figure 8 below as a function of x. The downstream coordinate 
grows from bottom to top and from left to right, and corresponds to x = 400,402.5,405, 410, 415, 
420, 422.5, 425 mm and so on up to 595 mm with step 2.5 mm. (Graphs from data obtained in 
Kachanov 1990, 1991 and references therein.) 

conclusion was made in the last reference: ‘It is highly probable that the behaviour of 
the spikes.. .can be described within the framework of a theory of solitons’, and the 
hypothesis was proposed that ‘ the spikes observed in the K-regime of the transition, 
and described within the framework of the wave-resonant concept as weak-nonlinear 
wave packets, can be considered also as solitons’. This hypothesis was developed in a 
number of subsequent works (Kachanov 1990, 1991). 

Independently, a mathematical basis for the possible explanation of the phenomenon 
discussed above was proposed. In Zhuk & Ryzhov (1982), Smith & Burggraf (1985), 
Ryzhov & Savenkov (1989), Ryzhov (1990), Rothmayer & Smith (1987), Conlisk et al. 
(1987) it was shown within the framework of asymptotic theory that the development 
of essentially nonlinear disturbances in the boundary layer may be described by the 
Benjamin-Ono equation (within limits, as discussed later in the Appendix). The 
amplitude of such disturbances must be higher than that typical for free oscillations in 
an interacting boundary layer with the triple-deck structure, and increasing amplitude 
of the oscillations results in the growth of their typical frequencies. 

The Benjamin-Ono equation is one of the remarkable nonlinear equations of 
mathematical physics which have solutions with soliton properties. It was derived and 
studied many years ago (Benjamin 1967; Ono 1975) in connection with the analysis of 
quite another problem, concerning the propagation of disturbances in a stratified fluid 
of finite depth. Further properties of this equation are still being investigated. 
Although Zhuk & Ryzhov (1982) and Smith & Burggraf (1985) laid the foundation for 
the following mathematical suggestion of fully nonlinear fluctuations in the K-regime 
of boundary-layer transition, they did not establish a direct link with the explanation 
of the flashes-spikes’ nature. 
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The first attempt to apply the soliton solution of the Benjamin-Ono equation to the 
experimental investigation of large-amplitude disturbances was undertaken by 
Rothmayer & Smith (1987). The choice of a one-parameter family of solutions restricts 
the application to an analysis, most likely, of alternative or bypass ways of 
laminar-turbulent transition rather than the properties of flashes-spikes in the periodic 
oscillations which can give rise to the K-regime. Another approach was used by 
Ryzhov & Savenkov (1989), Conlisk et al. (1987), Smith (1984) and Ryzhov & 
Savenkov (199 1) where calculations of a two-dimensional wave packet were carried out 
for interacting boundary layers with the triple-deck structure. The results in Ryzhov & 
Savenkov (1990) correlate well qualitatively with experimental data and tend to 
indicate soliton behaviour in the central cycles of oscillation within the packet when 
their amplitude becomes sufficiently large. These results point to the eventual 
localization of high-frequency disturbances that leads to the formation of solitons 
within each cycle of the periodic oscillations observed in the experiments. This 
conclusion seems to have been corroborated directly in Ryzhov (1990) through 
comparisons of the theoretical soliton spectra with those observed in the experiments 
(Borodulin & Kachanov 1988). Thus the combined efforts of experimentalists and 
mathematicians yielded (by the end of the 1980s) the conclusion that to a large extent 
the localized disturbances observed in the form of flashes-spikes on the oscilloscope 
traces can actually represent the solitons of the Benjamin-Ono equation in a 
transitional boundary layer ( see also the Appendix). The arguments for this view and 
extra features are discussed in detail below, together with the results of close 
comparisons of the theoretical and experimental data, which add much weight to the 
view. 

3. Asymptotic analysis of nonlinear disturbance behaviour 
Experiments indicate that the amplitude of an unstable Tollmien-Schlichting wave, 

generated by a harmonic source, typically grows downstream and the wave enters a 
region of essentially nonlinear development. The period of the oscillation appears to 
remain almost invariant but the form of the signal is distorted (nonlinearly) at this 
stage. The spike which starts to form in the oscilloscope traces (see figure 1) represents 
a very narrow zone where the velocity disturbance has rather large (negative) values. 
Such a structure of the oscillation cycle needs, for its description, modification of most 
previous theoretical approaches of course. A sketch of the cycle with a spike is shown 
at the top of figure 2 as a long-and-short dashed line. 

We consider the flow of an incompressible fluid along a semi-infinite plate, at high 
Reynolds number R based on the free-stream velocity Uz, and the distance L* from the 
leading edge. Then the frequency w* of a Tollmien-Schlichting wave can be evaluated 
(within the framework of linear stability theory) for the vicinity of the lower branch of 
the neutral stability curve (Smith 1979; Zhuk & Ryzhov 1980) as 

w* = €-z( UZ/L*) w,  

where w is of order unity and c: = R-i is a small parameter. The non-dimensional 
wavelength I = P/L* is, according to (3.1), of order e3. These normalizations of the 
time and distance allow the Navier-Stokes equations to be simplified (below) but it is 
necessary also to gauge the disturbance amplitude. 

The difference between the pressure p* at any point and the free-stream pressure p z  
is assumed to be of order s2. Then the region of disturbed flow has a triple-deck 
structure (Smith 1979; Zhuk & Ryzhov 1980), characterizing the period of the 
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FIGURE 2. Sketch of the triple- and four-deck structure of the disturbed flow field in the 
asymptotic theory. See text for details. 

described nonlinear oscillations. The corresponding three sublayers are shown in figure 
2 as solid lines. 

If, in dimensional variables, t* is the time, x*,y* are the Cartesian coordinates, 
u*,v* are the velocity components, and p* is the fluid density, then within the lower 
near-wall sublayer the variables take the form 

t* = €2(L*/UZ)t ,  x* = L*(l+€3X), y* = s5L*y,\ 
V* = e3u: V ,  p* - p z  = e 2 p * ~ Z 2 p ,  J 

%o, -+u-+v-=--+- 

U* = EV*, U, (3.2) 

with u, v, p, x ,  y ,  t generally of order unity. From substitution into the Navier-Stokes 
equations, the flow field and pressure are controlled by the Prandtl boundary-layer 
equations 

au au au ap a t  au av -+-=o, - 
ax ay aY at ax ay ax a y  

where the unknown pressure disturbance p is connected with the unknown 
displacement thickness -A by the formula 

p ( x , t )  =-  f ~ aA’aX(X, t) dX. 
71 - , x - X  (3.3) 

The boundary conditions along the external ‘edge’ of the lower sublayer are 

u-y+A(x , t )  as y + m ,  

as usual in triple-deck theory. The conditions on the plate surface at y = 0, away from 
disturbance sources, are of the usual type u = v = 0. Also, an O( 1) skin-friction factor 
can be incorporated in the normalizations above. 

As mentioned above, when the fluctuation amplitude grows the disturbance trace 
can acquire a form with narrow ‘large’ spikes. For the analysis of this nonlinear stage 
therefore we introduce one more small parameter, A,  restricted by the inequality 
8 + A 4 1. Let us also suppose that within the spike zone the relative pressure 
disturbance is of size A 2  typically (rather than e2). Then the lower near-wall sublayer 
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divides into two sublayers with essentially different properties. The new four-deck 
structure for the wave motion is shown in figure 2 as dashed lines and the new 
intermediate sublayer is shown shaded. Inside this sublayer (3.1) is not valid ; the new 
normalization required is 

} (3.4) 
t* = s4A-’ ( L * / U z )  t’, X* = L*(l +e4A-’x’), y* = e“AL*y,, 
U* = AUZ u,, V* = A3U*, v$,  p* -pa * - A ‘  - p *u*2 5c pi.  

Since the intermediate sublayer is significantly shorter and thicker than the initial 
lower near-wall one, the terms with viscous tangential stresses become negligible and 
we have the inviscid governing equations (Zhuk & Ryzhov 1982; Smith & Burggraf 

au, au, ilu apt = 0, - + u . - + ~ l . - d = - -  -+-=o, - 
c?x’ ayyi 2Y 1 at’ l ax /  a6yi c?X” 

1985) aui av. 

(This sublayer is akin to a nonlinear critical layer next to a rigid surface.) As far as the 
pressure disturbance pi is concerned, it is related to the displacement thickness - A, by 
means of the integral (3.3) after replacement of x by x’.  As is easily seen from (3.4), 
in the limit A + 1 the thickness of the intermediate sublayer is of the same order as that 
of the initial boundary layer, and its length becomes comparable with the thickness. 
Both components of the velocity vector then tend to grow to O(1) quantities, in non- 
dimensional terms. So this limit points to a stage governed by the full system of the 
Euler equations, with the normal pressure gradient taken into account. 

In the new near-wall (viscous) sublayer within the spike zone the definition of the 

showing that this sublayer is significantly thinner than that of the original triple-deck 
structure. The unknown functions are defined by the relationships 

(3.6) 
and they satisfy the boundary-layer equations but with the pressure expressed now 
through the known displacement thickness 

by means of (3.3). 
Of course the boundary conditions for all zones should be specified, and the 

corresponding solutions have to be matched at the sublayers’ boundaries. This 
procedure is discussed in detail by Zhuk & Ryzhov (1982), Smith & Burggraf (1985), 
Ryzhov (1990), among others. 

Subsequent analysis of the intermediate sublayer within the spike zone results in the 
conclusion (Zhuk & Ryzhov 1982; Smith & Burggraf 1985; Ryzhov 1990; Conlisk 
et al. 1987) that the displacement thickness - A, is governed by the integral-differential 
Benjamin-Ono equation (Benjamin 1967 ; Ono 1975). 

normal-to-wall coordinate is y* = € 6 ~ - 1 ~ *  Y l ,  (3 * 5 )  

U* = A U ~ U , ,  V* = E ~ A U ~ V ~ ,  p *-  p ,  * - 4 2  - p *u*2 (1 pl, 

-A,  = -A,(x’,  t’) 

It is well known that this equation has soliton solutions. We suggest that the equation 
can describe the development of the spikes-solitons (or a significant part thereof) in the 
transitional boundary layer observed in the experiments. 

For the present purposes it is not necessary to consider the general theory of the 
solitons. It seems sufficient to investigate a simple periodic solution of (3.7), namely 

w .  k. 2k,( 1 -A;)$ A .  =“+A- E = ki X’ - W, t‘, ’ ki ( 1 - A $  1-Aico~E’ 

which depends on three arbitrary constants, wi, k, and A,(O < A ,  < 1). 
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It is known that the asymptotics of the first root of the dispersion relation, 
connecting the frequency with the real positive wavenumber k(+ a) for Tollmien- 
Schlichting waves, satisfies 

The main term in this formula can be also obtained from the integral (3.8) applied to 
the description of disturbances propagating along the boundary layer with zero 
background perturbations and with amplitude coefficient A, + 0. This can be shown to 
be a common property of any small oscillations governed by the Benjamin-Ono 
equation. It is also possible to obtain this result by taking into account, in (3.9), the 
renormalization of the frequencies w = (A/E)~w( and the wavenumbers k = (d/E)k, 
arising from (3.2), (3.4) in line with the analysis of the intermediate sublayer structure. 
So the neutral character of small oscillations within this sublayer is the result of s /A  
tending to zero. 

Let us use the relation w = k,2 (although it is not essential for the following analysis 
and only somewhat simplifies it) assuming, after Ryzhov (1990), that this connection 
is valid for nonlinear processes; see also Conlisk et al. (1987). Then the integral (3.8) 
has the form 

w =k2+i42(1+i )+  .... (3.9) 

(3.10) 

The next section is devoted to an investigation of the properties of the solutions (3.8) 
or (3.10) and to their comparison with the experimental observations. 

4. Comparison of theoretical results with experimental observations 
4.1. Qualitative agreement 

A first qualitative comparison of the asymptotic results with the experimental ones can 
be carried out without solving the Benjamin-Ono equation (3.7). Of course, it is 
necessary to take into account that the application of the two-dimensional theory 
requires care when comparing with three-dimensional experiments. However, the 
spatial character of the disturbances apparently does not play a dominant role in the 
initial stages of their development (see Kachanov et al. 1985, 1989; Kachanov 1987a, b 
and $4.2). The application of the two-dimensional theory is restricted just to these 
stages. 

The comparison of different normalizations of the normal-to-wall coordinate, 
described by (3.2), (3.4), (3.9, shows that the subdivision of the near-wall sublayer, 
which appears in the structure of the instability wave, does not take place in the stage 
when A = E. One can conclude from this point that the spikes are formed from initial 
harmonic oscillations and the viscous near-wall sublayer is the site of their formation, 
at this stage. The formulae (3.2), (3.4), together with the asymptotic relationships (3.6), 
also show that the amplitudes of both velocity components and the pressure 
disturbance have the same order of magnitude throughout the flow sublayers if 
A = E. 

But amplification of the disturbances, characterized by the inequality A % E, is 
accompanied by the formation of vortex structures having smaller duration, i.e. the 
spikes. Since the new intermediate sublayer is thicker than the initial near-wall zone of 
the instability wave, the spikes (or some of their main effects) move away from the wall 
toward the upper edge of the boundary layer as d grows (cf. Zhuk & Ryzhov 1982; 
Smith & Burggraf 1985; Ryzhov 1990), possibly with reversed flow. 
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FIGURE 3. Form of the Benjamin-Ono soliton (3.10) depending on parameter A, .  
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Just the same behaviour was observed in the experiments (Kachanov et al. 1985, 
1989; Borodulin & Kachanov 1988). It was clearly shown in Borodulin & Kachanov 
(1988) that the disturbances can divide into two different types, lower and upper ones, 
which have essentially distinct properties. The upper oscillations start to move away 
from the wall and to form the spike. The lower ones continue to propagate near the 
wall and form the typical inflexional instantaneous velocity profiles studied in the 
theories of linear local high-frequency secondary instability for examples (described in 
6 1, but see also the Appendix and Smith 1987, 1988a, Hoyle, Smith & Walker 1991 ; 
Peridier, Smith & Walker 1991 a,  b ;  Smith & Bowles 1992 for nonlinear theory). 

The second consequence of the formation of the intermediate sublayer is a 
distinction between the velocity c: of the disturbances propagating in it and the 
velocity c* of the disturbances travelling in the viscous near-wall sublayer. Indeed, the 
former velocity has the value (according to (3.4)) c: - AU;. At the same time, to 
evaluate the near-wall sublayer velocity we may use the normalizations (3.2) for the 
instability wave, which result in the estimate c* - E U ~ .  As mentioned above, the flow 
within the near-wall sublayer in the spike zone is described by the Prandtl boundary- 
layer equations with known pressure distribution(s). It is supposed (above) that such 
a sublayer plays a passive role in the propagation of the vortex disturbances and it 
cannot serve as a site of their origin, in this stage where d % E ;  see also the Appendix 
A. Thus amplification of the disturbances is accompanied by acceleration of the spike 
relative to the fluctuations that propagate within the viscous near-wall sublayer, which 
have a velocity almost uninfluenced by the nonlinear processes and remaining at a 
constant order of magnitude. 

This behaviour is also observed in the experiments (Borodulin & Kachanov 1988). 
The spikes (the upper disturbances) accelerate as they move away from the wall. Their 
speed increases by a factor of almost two during their formation process. Meanwhile 
the lower (near-wall) disturbances propagate with an almost constant velocity which 
becomes essentially different from that of the spikes (see figure 3 in Borodulin & 
Kachanov 1988; also the Appendix). 

4.2 Quantitative agreement of asymptotic theory and experiment 
Let us compare the analytical solution (3.10) with the experimentally observed spikes. 

The form of the oscillations described by (3.10) is shown in figure 3 for different 
values of the parameter A,. It is seen that growth of di corresponds to amplification of 
the spike amplitude. In the experiments the growth of the spike is observed when 
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FIGURE 4. Formation 
Kachanov 1988). 

x = 330 mm 0 fT I 

of the flash-spike in the experiment as a function of x (from Borodulin & 
Normal-to-wall coordinates correspond to maximal spike magnitude. 

FIGURE 5. Qualitative comparison of forms of Benjamin-Ono solitons (3.10), A,  = 0.65 (a) and of 
spikes at the stage of their formation observed in experiment (Borodulin & Kachanov 1988) at 
y = 2.6 mm, x = 410 mm (b). 

moving downstream. A sequence of oscilloscope traces, obtained in the experiment 
(Borodulin & Kachanov 1988) for the stage of spike formation, is shown in figure 4. 
So different stages of the spike formation are viewed here as corresponding to different 
values of the parameter A,. For example, the solution (3.10) correlates very well, for 
di  = 0.65 (figure 5 4 ,  with the trace obtained by Borodulin & Kachanov (1988) (figure 
5b) at x = 410mm, y = 2.6 mm (the y-position where the spike has maximum 
magnitude). 

Of course the evolution of the soliton with time, or in space, can be calculated only 
numerically, as was done by Ryzhov & Savenkov (1989, 1991). But it is possible to 
carry out a direct comparison of the analytical solution (3.10) with the experiment, 
using a magnitude of the oscillation as a parameter in both the theory and the 
experiment to compare different form parameters of the disturbance. 

We consider the following form parameters : 

A+ = max {A&$)} -A , ,  

which is a maximum positive instantaneous deviation from the mean value A, 
10-2 
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defined as 

next, 

is a minimum negative instantaneous deviation from the mean value; further, 

A -  = min {A,(5)} - A, 

A ,  =-( 2 A+ - A - )  = ;(A+ + IA-I) 

is a magnitude of the disturbance; 

A ,  = ;(A+ + A - )  + A ,  

is a measure of the nonlinear distortion of the signal; 

is an asymmetry factor; 

is an asymmetry coefficient; 

is one more asymmetry coefficient ; 

A A  = t(lA-1 - A + )  

y = ( A - ( / A +  

~ 1 =  A A / A m  

7 0  = I E 2 0 - E 1 0 l P ~  and 7 1  = lE21-61Wn 

are widths of the spike-soliton at the levels A&) = A, and Ai(5) = A, (where 
and &,,g2, are the values of the argument ( at the points where Ai(E) = A, and 

It is easy to show that for the periodic solution (3.10) all the above parameters have 
Ai(5) = 4). 

simple analytical representations, namely : 

A ,  = k i s ;  A+  = 2ki ; A- = 2ki ( l  -@); 

S 
A ,  = 2 k i - ;  

4 
A ,  = - k , s  = - A o ,  

cos-' K J cos-' (4) 
A A = 2 k , s ;  y = @ ;  y, = 4; 7, = ; 7 ,  = 

K 

l - ( l - A $  1 -( 1 - A:); l + A ,  
where S =  (1 -A;); ' 4 =  Ai P=l-d,. 
We also note that 

Ai = 2q/(l +q2) .  

In particular, the formula for 7,  clarifies the geometrical sense of the parameter A,: it 
determines the width of the spike-soliton in the 'middle' of the oscillation swing. 

The dependences of the parameters A+,  A-, A A ,  y, y,, 70, 7, on the disturbance 
magnitude A, are shown for the solution (3.10) in figure 6(ay b). 

When A, increases, the absolute values of the parameters A+, A- ,  A A ,  y, y ,  also 
increase. But the maximum positive deviation A +  and asymmetry coefficient y, have 
asymptotic values, 2k, and 1 respectively, which are never exceeded, whereas the other 
parameters can grow indefinitely. At the same time the spike widths 70,71 decrease 
monotonically with the disturbance amplitude and tend to zero when A,  -+ 1. 

This behaviour is very similar to that observed in the experiment. Quantitative 
comparisons of the evolution of the parameters A+,  A-, AA,  y, yI, 7,, 71 calculated from 
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0 5 I 0  IS 
Amlki 

FIGURE 6. Dependence of form parameters (a) A+,  A - ,  A A  and y and (b) y l ,  T ~ ,  T~ and progression 
factor q, on disturbance magnitude A ,  for Benjamin-Ono solitons (3.10). 

(4. I ) ,  (4.2) and determined from the experimental data (Borodulin & Kachanov 1988) 
are shown in figure 7(a-f). To compare these results it was necessary to match the 
calculated amplitudes with those observed in the experiment. The only matching 
coefficient, 

was chosen to be equal to 0.09 (where u' is the value of the velocity disturbance used 
in the experiment, Borodulin & Kachanov 1988). Therefore new definitions of 
amplitudes 2 (which are equal to c,lA,l/k, for the theory and u'/Uz for the 
experiment) were introduced in figure 7 for convenience. 

It is seen from figure 7 that the theoretical results describe well quantitatively the 
process of spike-soliton formation through a definite (initial) stage of the disturbance 
development. It is remarkable that this stage extends in the experiment (Borodulin & 
Kachanov 1988) up to x w 410-420 mm, where the oscillation swing reaches values of 
25-30% (!), and corresponds to figure 4(a). (The downstream direction is shown in 
figure 7 by arrows.) The best agreement is observed in the parameters A + , K  (figure 
7a), d A  (figure 7 b), 70 (figure 7e) .  However, rapid deviation of all the parameters from 
the theoretical curves is observed past x w 420 mm and, possibly, is connected with a 
strong three-dimensionality in the physical flow at this stage of its development. This 
strong ' three-dimensionalization ' of the flow could be explained from the viewpoint of 
the wave-resonant concept (see 61 and e.g. Kachanov 1987a, b :  1990: Smith & Stewart 
1987) through the parametric resonant amplification of definite three-dimensional 
spectral modes which acquire, at this stage, rather large amplitudes comparable with 
the two-dimensional disturbances. Other contributory features are discussed in the 
Appendix. 

c, = ( ~ ' / ~ : ) / ( l 4 l / u  
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It is interesting that the essentially three-dimensional stage is characterized by 
significantly smaller maximal positive deviations A+ but greater maximal negative 
deviations ]A-I (figure 7a).  This behaviour results in very high asymmetric factors AA 
(figure 7 6 )  and, especially, asymmetric coefficients y, y1 (figure 7c, d), which are 3-6 
times greater than those predicted by the two-dimensional asymptotic theory and 
observed in the experiment at the initial stages of the development. The spike widths 
T~ T~ (figure 7 e , f l ,  observed at this three-dimensional stage, also deviate rapidly from 
the theoretical values and become two to five times smaller than the calculated ones. 
Nevertheless, the development of the spike-soliton is well described by the two- 
dimensional asymptotic theory up to the stage where the spike amplitude A ,  in the 
experiment reaches values which are of the same order as the maximal ones (figure 7). 
The parameter A,  reaches maximal values of about 0.67 at the end of the quasi-two- 
dimensional region. 

The spectral characteristics of the disturbances are also of much interest. Fourier 
decomposition of the periodic solution (3.10) gives 

where A ,  is determined by (4.1), (4.2). It is seen from (4.3) that the coefficients in the 
series decrease as a geometric progression with factor q > 0 (see (4.2)). The 
dependence of q on the disturbance magnitude is shown in figures 6(b) and 7(d ) ,  where 
y1 = q for the solution (3.10) (see (4.1)). 

This exponential attentuation of the harmonics' amplitudes with frequency 
corresponds very closely to that observed in the experiments (Kachanov 1987a, b;  
Borodulin & Kachanov 1988)' and this is more evidence of the good agreement of the 
soliton properties predicted analytically by the asymptotic theory and observed 
experimentally in the transitional boundary layer. The dependence of the progression 
factor q on A, determined from the experimental data, obtained in Borodulin & 
Kachanov (1988)' is also shown in figure 7 ( d ) .  It demonstrates rather good correlation 
with both the theory and the experimental values of y l .  Thus the progression factor q, 
for this kind of soliton, is equal to the asymmetry coefficient both in the theory and in 
the experiment. 

From this viewpoint it is interesting that the solution (3.8), (3.10) can be expressed 
in terms of the parameter 4 (which has clear physical sense and can be measured 
directly in the experiment) rather than the parameter A,.  So, from (3.10)' 

or with the help of (4.3), where 

and (see (4.2)) 

All the characteristics of the soliton form discussed above (see (4.1), (4.2)) can be also 

A ,  = i q o s  

s = 2q2/( 1 - 4 2 ) .  

expressed in terms of the parameter 4,  namely 

A + = -  40 4 A-  =- -40 4 , A , = -  40 4 
1 +q '  1-q 1 - 4 2 )  

- 4 0  q2 1 + 4  
1 -q' 

A -  
1 - 2(1 - q 2 ) '  

Y = - 

cos-' (2q/( 1 + q ) 2 )  
T 1  = 

It 
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This result is valid for both formulae (3.8), (3.10), because the connection wi = w&) 
influences only the mean value A,. These expressions are valid also for all functions 

m 

An = f o - q o  c q n c o s ( 4  
n-1 

and have the same geometric sense for them. These functions coincide with the solution 
(3.10) when 

f, = 404*/(2(1 -q2))  and 40 = 4ki. 
It is also necessary to note that the phases of the Fourier harmonics in the analytic 

solution (4.3) are synchronized, i.e. the valleys of the waves coincide with each other. 
This phenomenon was detected earlier experimentally by Kachanov et al. (1984, 1985, 
1989), Borodulin & Kachanov (1988). For example in figure 12 of Kachanov et al. 
(1984) the valleys of the harmonics were shown to coincide exactly in the peak domain 
within the experimental accuracy (about 2" of the fundamental period). This 
phenomenon was connected, within the framework of the wave-resonant concept 
(Kachanov 1987a, b), with the properties of harmonic and subharmonic resonances to 
amplify only those disturbances which have definite resonant phases. 

Thus we may conclude that the combined experimental and theoretical studies of the 
development of nonlinear disturbances in a transitional boundary layer, carried out 
mainly during the last decade, show that the hypothesis (proposed and developed in 
Borodulin & Kachanov 1988; Ryzhov & Savenkov 1989, 1991 ; Rothmayer & Smith 
1987; Zhuk & Ryzhov 1982; Smith & Burggraf 1985; Conlisk et al. 1987; Ryzhov 
1990, Kachanov 1990, 199 1) about the soliton nature of coherent structures/spikes 
seems well corroborated for the initial (quasi-two-dimensional) stages of the spike- 
soliton formation. According to the present view (and with the allowance for the 
Appendix), the generation of coherent structures/solitons (CS-solitons) is an inherent 
property of the K-regime of boundary-layer breakdown. 

5. Later stages of CS-soliton development 
The development of the soliton at later stages becomes essentially three-dimensional 

among other factors (see the Appendix), as mentioned above. In this case the spanwise 
coordinate z* and velocity component w* are defined by 

Z* = e4A-'L*z', W* = AUE wi. 

Taking (3.4) into account one can derive the following equations (Zhuk & Ryzhov 
1989; Smith & Stewart 1987; Smith 1986, 1987; Ryzhov 1980): 

where the pressure disturbance 
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400 600 
x (mm) 

FIGURE 8. Downstream evolution of y-coordinate of spike-soliton maximum y,. 
(Experimental data from Kachanov 1990, 1991 .) 

The boundary conditions for y, + co are the following 

and it is necessary to apply the usual surface boundary condition u1 = 0 at yi = 0. 
The presence, in the right-hand sides of (5.2), of terms which tend algebraically to 

zero near the upper edge of the intermediate sublayer is explained by the rapid 
amplification (inside this sublayer) of spanwise velocity fluctuations connected with 
spanwise oscillations of the self-induced pressure. These are the very disturbances 
which, in the end, result in the breakdown of the quasi-two-dimensional CS-solitons 
and the formation of the three-dimensional ones observed in the experiments at later 
stages of the transition process. 

However, the asymptotic expressions (5.2), together with the corresponding formula 

for the normal-to-wall velocity component, do not satisfy identically the set of 
equations (5.1), as has been known for many years. Therefore the question of the 
possibility of deducing the governing equation for the function A, has not been solved 
yet in the general three-dimensional case. 

Detailed experimental study of the CS-soliton development has been carried out in 
Kachanov (1990, 1991, and references therein). Some of the specific features, observed 
in the later stages of the laminar-turbulent transition, are presented below. 

The downstream evolutions of the dimensional (y,) and non-dimensional (y , /S)  
spike-soliton y-coordinates are shown in figure 8, with the displacement thickness 6 
determined experimentally. The spike moves away from the wall and then propagates 
along the external edge of the boundary layer (in line with the theory in Smith, Doorly 
& Rothmayer 1990). The geometric progression factor q shown in figure 9(a) (which 
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1 
I 

0 1 
400 600 

x (mm) 

FIGURE 9. Downstream evolution of spike-soliton form parameters at later stages of development 
y = y,. (Experimental data from Kachanov 1990, 1991). (a) Geometric progression factor q. (b) 
Spike-soliton magnitude A,. (c) Spike-soliton downstream speed c,. ( d )  Spike-soliton temporal width 
71. (e) Spike-soliton spanwise widths h, determined by means of 1, spike magnitude; 2, fundamental 
wave amplitude; 3, second and 4, third harmonic amplitude; and 5,  mean velocity defect in the 
position of the spike. 

almost coincides with the asymmetry coefficient yl) achieves its maximum value (about 
0.9) at x z 500 mm and then decreases slowly to a value of about 0.78. The spike 
magnitude A, = IA-1 (figure 96) is also stabilized past x z 500 mm and decreases 
slowly further downstream. Again, the downstream velocity of the spike-soliton 
becomes almost constant past x x 500 mm (figure 9c) and, indeed, is close to the free- 
stream speed (again compare Smith et al. 1990). Figure 9 ( d )  demonstrates the further 
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behaviour of the spike width 71, which becomes almost constant past x x 480 mm and 
has a value of about 0.08 of the fundamental period. 

The downstream evolution of the spanwise dimensions of the spike, determined with 
the help of various criteria, is shown in figure 9(e). The formation of the CS-soliton is 
accompanied by its fast localization (' self-focusing ') in space, which is connected with 
the rapid amplification of three-dimensional spectral modes. But beginning at 
x x 500 mm the spanwise widths of the soliton becomes almost constant. The typical 
angle of the soliton's spanwise dispersion at the stage x 2 500 mm is only about 0.2", 
i.e 45 times smaller than the corresponding angle for a linear wave packet (of small 
amplitude, produced by a point source) which was measured by Gilyov, Kachanov & 
Koslov (1 983) for the same free-stream speed and fundamental frequency and was 
found equal to about 9.0" (dotted line in figure 9e; see also the theory in Smith & 
Doorly 1992; Smith 1992). 

All these and other features of the spike behaviour, observed at the later three- 
dimensional stages of its development (see Kachanov 1990, 1991), tend to testify to its 
soliton nature. The spikes appear to be very stable, conservative, eigenstructures of the 
transitional boundary layer, localized in time and space. After the end of their 
formation they move downstream along the external edge of the boundary layer with 
almost free-stream velocity (see also Smith et al. 1990). They hardly change their form 
and almost do not disperse in time and space, in contrast with linear wave packets. 
They decay downstream only very slowly, despite the fact that they consist of high- 
frequency fluctuations which rapidly attenuate according to linear stability theory ; 
clearly nonlinearity plays a key role (as in Smith & Doorly 1992; Smith 1992). 

Thus, although theory cannot yet describe the three-dimensional solitons fully, 
experimental results (Kachanov 1990, 199 1) demonstrate a number of typical soliton 
properties of the spikes observed at the later, essentially three-dimensional stages, of 
their development. Moreover, it has been suggested in Kachanov (1990, 1991) that the 
coherent structures in the fully developed turbulent boundary layer are also of soliton 
nature. Therefore the study of the CS-solitons may be very important for the 
understanding of not only transitional flows but also turbulent ones. The development 
of a theory to describe fully three-dimensional solitons in the boundary layer (as with 
other features discussed in the Appendix) is a challenge to theoreticians. 

This research was carried out with the support of the Air Force Office of Scientific 
Research, to 0. S.R. under Grant AFOSR 88-0037 and to F.T.S. under Grant 
AFOSR 89-0475, and later of the Alfred P. Slogan Foundation, to 0. S. R., and the 
United Technologies Independent Research Program and Army Research Office (no. 
DAAL03-92-G-0040), to F. T. S. SERC support is also acknowledged, as are helpful 
comments by the referees. 

Appendix. Some significant related issues 
Here we address a number of related or wider issues concerning the transition and 

breakdown described earlier in the paper and attempt to put the findings in a broader 
context. 

First, even though the agreement between the Benjamin-Ono account and the 
experiments is very close (see E4.1, 4.2 and below), and seems a breakthrough, one 
cannot claim that the full transition process is understood theoretically, and neither 
should one overlook the limitations of that account or the several extra features 
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present. These limitations/extra features appear to fall into three major categories 
(1)-(111) as follows. 

(I) Three-dimensionality. As stated in $ 5 ,  secondary instability is likely to force 
three-dimensionality to enter play, eventually as a nonlinear effect. Various 
theoretical studies support this, as do the present and other experiments. Further, 
strong three-dimensionality in the form of persistent vortex motions is common in the 
turbulent state, in contrast with the two-dimensional theory. However, in the 
experimental findings under discussion the essential nonlinearity comes first whilst 
three-dimensionality begins to play an important part at some position further 
downstream. The three-dimensional behaviour, like the two-dimensional, is also 
subject to the features (11), (111) below. 

(11) Shorter lengthscales. As the typical streamwise lengthscale decreases (the- 
oretically or experimentally, see @ 3, 4) the slenderness assumption noted just before 
(3.4), which is a main assumption behind the governing equations (3.7), must 
ultimately fail. That occurs when the lengthscale reaches as low as O(R-i), at which 
stage the timescale falls to the same order, the normal scale of the intermediate region 
rises to the same order, and the velocity and pressure amplitudes all become O( l), in 
non dimensional terms. This is as anticipated in @3,4 in effect, i.e. the factor A + 0(1) 
(Zhuk & Ryzhov 1982; Smith & Burggraf 1985). Thus now the full unsteady nonlinear 
Euler equations apply, 

or the three-dimensional extension. The Euler region spans the entire boundary layer, 
with the characteristic non-dimensional flow velocities and in particular the 
propagation speeds cr/US, being O(1). In addition there is a viscous near-wall sublayer 
of non-dimensional thickness O(R-:) in y*/L*,  wherein the characteristic streamwise 
velocities and propagation speeds are again O( l), cf. $4. The existence of the sublayer 
forces O(R-f) relative corrections to be present throughout the Euler region, and these 
corrections can in some circumstances affect the main amplitudes (Smith et al. 1990); 
another more drastic effect of the viscous sublayer is covered by (111) below. Since the 
Euler equations (A 1) hold, a numerical treatment is necessary in general. Analytically, 
the system (A 1) can be shown to match with the Benjamin-Ono form at one extreme, 
namely for low speeds and amplitudes. The match, in Smith & Burggraf (1985), 
involves a three-tiered treatment of (A l ) ,  rather than four tiered as in $3, but the 
fourth tier here is provided by the viscous sublayer. Moreover, at the other extreme, 
for the highest speeds where cf + P,-, a theoretical suggestion of Smith et al. (1990) 
comes into force, describing fast-moving zones that are still of Euler type as they 
incorporate small disturbances which nevertheless remain nonlinear because of the 
closeness of their streamwise velocities u* to U z .  These fast-moving zones lie at or 
outside the nominal edge of the boundary layer and they are suggested in the last 
reference to represent the leading edge of a spot as it travels on downstream. They yield 
good qualitative agreement with the experiments quoted in Smith et al. (1990) as well 
as those described in $4. The experimentally observed overhang of this leading edge 
above the majority of the boundary layer is similar to the theoretical flow structure 
underneath the fast-moving zones when the higher-order viscous effects mentioned 
previously are taken into account, as summarized in Smith et al.’s (1990) figure 1. (This 
aspect, among others, is related to the closure of the amplitude-dependence neutral 
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curve.) The Euler stage of (A 1) is also important for two other reasons, in that it leads 
to predictions of both the Kolmogorov microscale O(R-i) and the laminar-turbulent 
stress sublayer thickness O(R-’ In R), as discussed in the last-named paper. To be sure, 
much of this item (11) is still unknown. The main point in the present context, however, 
is that the two experimental observations at higher amplitudes noted near the end of 
our $ 5 ,  namely ‘velocities close to the free-stream speed ’ and movement of spikes in 
the normal direction through the boundary layer downstream (ultimately ‘along the 
external edge of the boundary layer’), tend to coincide both with the predictions of the 
Benjamin-Ono stage and with the predictions of the Euler stage (A 1) further 
downstream. 

(111) Viscous effects. This third feature may have only a secondary role during much 
of the spike development described in §$2,4, and indeed it is assumed so in the theory 
leading to (3.7), since the viscous boundary layer or sublayer is supposed to stay 
attached. When that supposition is correct, (3.7) is valid, subject to (I), (11) above, and 
viscous effects remain confined to a small relative order, cf. (11) above. However, that 
viscous sublayer is governed by the unsteady non-interactive boundary-layer equations 
and driven by the unsteady slip velocity a A ,  effectively. So its solution can encounter 
the Van Dommelen singularity in displacement, whereby 

6, +. co where 6, = J: (1 - uI/A,) dy, 

within a finite scaled time (1‘ of order unity), and this is especially so if the variation 
of A,  becomes extreme, in a spike-type form as in $4 for example. (Otherwise, we note, 
the sublayer may take on the form of a boundary layer on an upstream-moving wall 
in the appropriate moving frame, but then pointing to the singularities discussed in 
Elliott, Cowley & Smith 1983. There is also a possible connection here with the steady 
but interactive breakdown of Smith 1988 6, leading to shorter local lengthscales.) 
Shortened timescales then come into operation locally of course, introducing an 
inner-outer interaction between the pressure and the fast-increasing displacement, as 
a new feature, via the back-influence from the slip stream. The interaction there is 
equivalent to that in the interactive boundary-layer system quoted between our (3.2) 
and (3.3). This then can lead on to the finite-time breakup of Smith (1988a) for 
interactive flow. The breakup is nonlinear, predominantly inviscid, associated with an 
inflexional velocity profile locally (cf. the experiments) and it shows that the pressure 
gradient and skin friction become singular, 

in a normalized form, at a finite scaled time. Detailed comparisons with numerical 
studies have been made recently by Peridier et al. (1991 a, b) and these show excellent 
agreement with the precise form of (A 3). It is interesting that the unsteady interactive 
problem addressed in Peridier et al. (1991 a, 6) is for a vortex-driven sublayer, which 
is rather close to our present concerns. Quantitative comparisons between experiments 
and the Smith (1988a) nonlinear breakup theory underlying (A 3) are presented in 
Smith & Bowles’ (1992) recent study, again showing agreement. Next, therefore yet 
shorter length- and timescales must be provoked locally, and these are found to be 
associated with normal pressure gradients as the main new feature. Again, however, 
much of item (111) remains unknown theoretically as yet. 

Second, the theory summarized in $3, and the features (I)-(III) above, may be 
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viewed as part of the continuing change of views, and the accent on strongly nonlinear 
theory (as opposed to linear or weakly nonlinear), which have come into place over the 
last decade or so. Indeed, this paper is in agreement with the view expressed in recent 
theoretical works, namely that there are (so far anyway) only three truly nonlinear 
theories for flat-surface transition. These three theories are given by: pressure- 
displacement interactions ; Euler-scale flows ; and vortex-wave interactions. The 
Benjamin-Ono regime, we note, is covered by the overlap between the first two 
theories. 
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